Generation of α -Radicals of Acetic Acid Derivatives from α -Stannyl Ester and Amide and Their Reactions with Electron-Rich Olefins

Yasushi KOHNO and Koichi NARASAKA Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, 7-3-1, Bunkyo-ku, Tokyo 113

Oxidation of α -tributylstannyl ester and amide with Ce^{IV} compounds generates α -radicals of acetic acid derivatives with the elimination of the stannyl group. The radicals thus generated react with various electron-rich olefins to give the corresponding addition products in good yield.

Oxidative coupling of silyl enol ethers or ketene silyl acetals is a useful synthetic method for the preparation of 1,4-dicarbonyl compounds.¹⁾ However, for the cross coupling of silyl enol ethers, one of the silyl enol ethers has to be employed in large excess.^{1a,d)} In addition, ketene silyl acetals have been generally utilized to synthesize symmetrical succinic acid derivatives²⁾ and only one example was recently reported for the cross-coupling reaction.^{1e)}

It seemed to be difficult to prevent the self-coupling reaction when the radical species are generated from enol derivatives such as silyl enol ethers by the oxidation, 1 d) because such substrates also have a property to act as radical acceptors. It is known that α -stannyl acetates exist in equilibrium with the O-metallated (enol) forms but predominantly in C-metallated (α -stannyl) forms. Recently we reported that the one-electron oxidation of α -stannyl sulfides and N-(1-stannylalkyl) amides gives the corresponding carbocations with the cleavage of the stannyl-carbon bonds. Accordingly, it was expected that the oxidation of α -stannyl acetates may give α -radicals or cations of acetates with the elimination of the stannyl group and then would react with olefinic compounds.

Actually, the reaction of ethyl 2-(tributylstannyl)acetate (1a) and α -(t-butyldimethylsiloxy)styrene (2a, 2 molar amounts) in the presence of 2 molar amounts of ammonium hexanitratocerate(IV) (CAN) gave the addition product 3a in 44% yield.⁵⁾ It was also noted that ethyl 2-(trimethylsilyl)acetate (1c)⁶⁾ was hard to be oxidized under the same reaction conditions and the oxidation of a mixture of 2-trimethylgermyl derivative 1b⁷⁾ and 2a with CAN afforded the addition product 3a in 22% yield (Eq. 1).⁸⁾

As the result of examining the reaction conditions, the addition product **3a** or **3d** was obtained in 96% or 86% yield, respectively, by the treatment of a mixture of 1.3 molar amounts of the stannyl ester **1a** or **1d** and the

enol ether 2a with 2 molar amounts of tetrabutylammonium hexanitratocerate(IV) (TBACN)⁹⁾ as an oxidant in the presence of K_2CO_3 at 0 °C (Eq. 2). The treatment of 1d with TBACN in the absence of the acceptor 2a afforded the homo-coupling product, dibenzyl succinate, in 46% yield, but the above reactions gave the crossed addition products exclusively and none of the succinate was detected.

$$(n-Bu)_3Sn$$
 CO_2R + $(n-Bu)_3Sn$ CO_2R + $(n-Bu)_3Sn$ + $(n-B$

The reaction is supposed to proceed via the α -radical of acetate **4**. That is, the α -stannyl acetate **1** is oxidized to generate the radical **4** with Ce(IV) through either the path A or B, which adds to the silyl enol ether **2a**. The resulting α -siloxy radical **5** is further oxidized with Ce(IV) to the cation **6**, and the γ -keto ester **3** is formed eventually with the elimination of the silyl nitrate (Scheme 1).

$$(n\text{-Bu})_3\text{Sn} \uparrow \text{CO}_2\text{R} \longrightarrow \bigcirc \text{OSn}(n\text{-Bu})_3 \quad \text{path A} \quad \bigcirc \text{OCe}(\text{IV}) \quad \bigcirc \text{OR} \quad$$

Formation of the α -radical 4 was confirmed by the following experiments. The oxidation of 1d with TBACN in the presence of CBr₄ as a radical trapping reagent¹⁰) gave benzyl 2-bromoacetate (7) in 68% yield (Eq.3). The reaction of 1d and 2a was also tried in the presence of CBr₄, and the adduct 3d was obtained in 70% yield along with 7 in 14% yield but not with α -bromoacetophenone.

$$(n-Bu)_3$$
Sn CO_2 CH₂Ph + CBr₄ $\xrightarrow{TBACN, K_2CO_3}$ Br CO_2 CH₂Ph (3)

The reactions of the α -stannyl ester 1d and various electron-rich olefins 2 were illustrated in Table 1. In addition to aryl substituted silyl enol ethers 2a-c, aliphatic silyl enol ethers 2d and 2e, trisubstituted silyl enol ethers 2e and 2f, a vinyl ether 2g and vinyl acetate 2h also reacted with 1d and the addition products were isolated in good yield. Moreover, the reaction of 1d with α -methylstyrene (2i) also proceeded, giving 4-pheny-4-methyl- γ -butyrolactone in moderate yield.

The typical experimental procedure is as follows: To an acetonitrile (20 ml) solution of TBACN (2.25 g, 2.26 mmol) and K_2CO_3 (0.78 g, 5.65 mmol) was added an acetonitrile (5 ml) solution of **1d** (0.50 g, 1.13 mmol) and **2d** (0.20 g, 0.87 mmol) at 0 °C under an argon atmosphere. After stirring for 2 h, aq. NaHCO₃ was addeed

Table 1. The Reactions of 1d with Olefins 2

(n-Bu) ₃ Sn CO ₂ CH ₂ Ph	+ Olefin 2	TBACN, K₂CO ₃	> Product
		CH ₃ CN, 0 °C, 2 h	
Olefin	Product		Yield/%
OSi(t-Bu)Me ₂		OCH₂Ph O	87
OSi(t-Bu)Me ₂ Ph 2c	Ph	OCH₂Ph O	72
OSi(t-Bu)Me ₂	_{i-Pr}	OCH ₂ Ph	79
OSi(t-Bu)Me ₂ Et 2e	Et Me	OCH₂Ph O	72
OSi(t-Bu)Me ₂		OCH₂Ph O	70
OMe Ph 2g	Ph	OCH₂Ph O	61
Me 2h	Me	OCH₂Ph O	61
Ph 2i	Me Ph O		52
SiMe ₃	/	OCH₂Ph O	48

to the reaction mixture. Usual work-up and purification by column chromatography (ethyl acetate : hexane = 1:5, v/v) gave benzyl 5-methyl-4-oxohexanoate (0.16 g, 79%).

This method was also applied to the generation of a radical from an α -stannyl acetoamide. When N,N-dimethyl-2-tributylstannylacetamide (8)¹¹⁾ was treated with TBACN in the presence of olefins 2 under the same reaction conditions described above, the addition products were obtained as shown in Table 2.

Thus the α -radicals of acetate and acetamide are readily generated from the α -tributylstannyl acetates 1a,d and the acetamide 8 by the oxidation with Ce(IV), and the intermolecular addition reaction of these radicals occurs selectively with electron-rich olefins under mild reaction conditions.

Product

Olefin	Product	Yield/%
OSi(t-Bu)Me ₂ Ph 2a OSi(t-Bu)Me ₂	Ph NMe ₂	89
0 2b	NMe ₂	79
OSi(f-Bu)Me ₂	Ph NMe_2 NMe_2	70
Ph 2i	Me Ph O	70
SiMe ₃	NMe ₂	48

References

- 1) a) Y. Ito, T. Konoike, and T. Saegusa, J. Am. Chem. Soc., 97, 649 (1975); b) Y. Kobayashi, T. Taguchi, and E. Tokuno, Tetrahedron Lett., 1977, 3741; c) R. M. Moriarty, R. Penmasta, and I. Prakash, Tetrahedron Lett., 28, 873 (1987); d) E. Baciocchi, A. Casu, and R. Ruzziconi, Tetrahedron Lett., 30, 3707 (1989); e) T. Fujii, T. Hirao, and Y. Ohshiro, Tetrahedron Lett., 33, 5823 (1992).
- 2) S. Inaba and I. Ojima, Tetrahedron Lett., 1977, 2009; G. E. Totten, G. Wenke, and Y. E. Rhodes, Synth. Commun., 15, 291 (1985).
- 3) A. Zapata and C. Acuna A., Synth. Commun., 14, 27 (1984).
- 4) K. Narasaka, T. Okauchi, and N. Arai, Chem. Lett., 1992, 1229; K. Narasaka, Y. Kohno, and S. Shimada, Chem. Lett., 1993, 125.
- 5) Preparation of γ -keto esters by the nucleophilic substitution reaction of methyl 2-bromoacetate with silyl enol ethers in the presence of fluoride ion: I. Kuwajima, E. Nakamura, and M. Shimizu, J. Am. Chem. Soc., **104**, 1025 (1982).
- 6) R. J. Fessenden and J. S. Fessenden, J. Org. Chem., 32, 3535 (1967).
- 7) S. Inoue, Y. Sato, and T. Suzuki, Organometallics, 7, 739 (1988).
- 8) By the cyclic voltammogram measurements, 1a exhibited oxidation peaks at about 0.9 V and 2.7 V (vs. Ag/Ag⁺, CH₃CN, irreversible), while **1b**,**c** showed no oxidation peaks up to 3 V.
- 9) H. A. Muathen, *Indian J. Chem.*, **30B**, 522 (1991).
- 10) R. G. Kryger, J. P. Lorand, N. R. Stevens, and N. R. Herron, J. Am. Chem. Soc., 99, 7589 (1977).
- 11) A. Roubineau and J. C. Pommier, J. Organomet. Chem., 107, 63 (1976).

(Received July 5, 1993)